3.1431 \(\int \frac{1}{x^3 (2+x^6)^{3/2}} \, dx\)

Optimal. Leaf size=394 \[ \frac{5 \left (x^2+\sqrt [3]{2}\right ) \sqrt{\frac{x^4-\sqrt [3]{2} x^2+2^{2/3}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )\right )^2}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{x^2+\sqrt [3]{2} \left (1-\sqrt{3}\right )}{x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )}\right ),-7-4 \sqrt{3}\right )}{12 \sqrt [3]{2} \sqrt [4]{3} \sqrt{\frac{x^2+\sqrt [3]{2}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )\right )^2}} \sqrt{x^6+2}}+\frac{5 \sqrt{x^6+2}}{24 \left (x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )\right )}-\frac{5 \sqrt{x^6+2}}{24 x^2}+\frac{1}{6 x^2 \sqrt{x^6+2}}-\frac{5 \sqrt{2-\sqrt{3}} \left (x^2+\sqrt [3]{2}\right ) \sqrt{\frac{x^4-\sqrt [3]{2} x^2+2^{2/3}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )\right )^2}} E\left (\sin ^{-1}\left (\frac{x^2+\sqrt [3]{2} \left (1-\sqrt{3}\right )}{x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )}\right )|-7-4 \sqrt{3}\right )}{8\ 2^{5/6} 3^{3/4} \sqrt{\frac{x^2+\sqrt [3]{2}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )\right )^2}} \sqrt{x^6+2}} \]

[Out]

1/(6*x^2*Sqrt[2 + x^6]) - (5*Sqrt[2 + x^6])/(24*x^2) + (5*Sqrt[2 + x^6])/(24*(2^(1/3)*(1 + Sqrt[3]) + x^2)) -
(5*Sqrt[2 - Sqrt[3]]*(2^(1/3) + x^2)*Sqrt[(2^(2/3) - 2^(1/3)*x^2 + x^4)/(2^(1/3)*(1 + Sqrt[3]) + x^2)^2]*Ellip
ticE[ArcSin[(2^(1/3)*(1 - Sqrt[3]) + x^2)/(2^(1/3)*(1 + Sqrt[3]) + x^2)], -7 - 4*Sqrt[3]])/(8*2^(5/6)*3^(3/4)*
Sqrt[(2^(1/3) + x^2)/(2^(1/3)*(1 + Sqrt[3]) + x^2)^2]*Sqrt[2 + x^6]) + (5*(2^(1/3) + x^2)*Sqrt[(2^(2/3) - 2^(1
/3)*x^2 + x^4)/(2^(1/3)*(1 + Sqrt[3]) + x^2)^2]*EllipticF[ArcSin[(2^(1/3)*(1 - Sqrt[3]) + x^2)/(2^(1/3)*(1 + S
qrt[3]) + x^2)], -7 - 4*Sqrt[3]])/(12*2^(1/3)*3^(1/4)*Sqrt[(2^(1/3) + x^2)/(2^(1/3)*(1 + Sqrt[3]) + x^2)^2]*Sq
rt[2 + x^6])

________________________________________________________________________________________

Rubi [A]  time = 0.220999, antiderivative size = 394, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.462, Rules used = {275, 290, 325, 303, 218, 1877} \[ \frac{5 \sqrt{x^6+2}}{24 \left (x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )\right )}-\frac{5 \sqrt{x^6+2}}{24 x^2}+\frac{1}{6 x^2 \sqrt{x^6+2}}+\frac{5 \left (x^2+\sqrt [3]{2}\right ) \sqrt{\frac{x^4-\sqrt [3]{2} x^2+2^{2/3}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )\right )^2}} F\left (\sin ^{-1}\left (\frac{x^2+\sqrt [3]{2} \left (1-\sqrt{3}\right )}{x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )}\right )|-7-4 \sqrt{3}\right )}{12 \sqrt [3]{2} \sqrt [4]{3} \sqrt{\frac{x^2+\sqrt [3]{2}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )\right )^2}} \sqrt{x^6+2}}-\frac{5 \sqrt{2-\sqrt{3}} \left (x^2+\sqrt [3]{2}\right ) \sqrt{\frac{x^4-\sqrt [3]{2} x^2+2^{2/3}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )\right )^2}} E\left (\sin ^{-1}\left (\frac{x^2+\sqrt [3]{2} \left (1-\sqrt{3}\right )}{x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )}\right )|-7-4 \sqrt{3}\right )}{8\ 2^{5/6} 3^{3/4} \sqrt{\frac{x^2+\sqrt [3]{2}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )\right )^2}} \sqrt{x^6+2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^3*(2 + x^6)^(3/2)),x]

[Out]

1/(6*x^2*Sqrt[2 + x^6]) - (5*Sqrt[2 + x^6])/(24*x^2) + (5*Sqrt[2 + x^6])/(24*(2^(1/3)*(1 + Sqrt[3]) + x^2)) -
(5*Sqrt[2 - Sqrt[3]]*(2^(1/3) + x^2)*Sqrt[(2^(2/3) - 2^(1/3)*x^2 + x^4)/(2^(1/3)*(1 + Sqrt[3]) + x^2)^2]*Ellip
ticE[ArcSin[(2^(1/3)*(1 - Sqrt[3]) + x^2)/(2^(1/3)*(1 + Sqrt[3]) + x^2)], -7 - 4*Sqrt[3]])/(8*2^(5/6)*3^(3/4)*
Sqrt[(2^(1/3) + x^2)/(2^(1/3)*(1 + Sqrt[3]) + x^2)^2]*Sqrt[2 + x^6]) + (5*(2^(1/3) + x^2)*Sqrt[(2^(2/3) - 2^(1
/3)*x^2 + x^4)/(2^(1/3)*(1 + Sqrt[3]) + x^2)^2]*EllipticF[ArcSin[(2^(1/3)*(1 - Sqrt[3]) + x^2)/(2^(1/3)*(1 + S
qrt[3]) + x^2)], -7 - 4*Sqrt[3]])/(12*2^(1/3)*3^(1/4)*Sqrt[(2^(1/3) + x^2)/(2^(1/3)*(1 + Sqrt[3]) + x^2)^2]*Sq
rt[2 + x^6])

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 303

Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(Sq
rt[2]*s)/(Sqrt[2 + Sqrt[3]]*r), Int[1/Sqrt[a + b*x^3], x], x] + Dist[1/r, Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a +
 b*x^3], x], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 1877

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[((1 - Sqrt[3])*d)/c]]
, s = Denom[Simplify[((1 - Sqrt[3])*d)/c]]}, Simp[(2*d*s^3*Sqrt[a + b*x^3])/(a*r^2*((1 + Sqrt[3])*s + r*x)), x
] - Simp[(3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*Elli
pticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(r^2*Sqrt[a + b*x^3]*Sqrt[(s*(
s + r*x))/((1 + Sqrt[3])*s + r*x)^2]), x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rubi steps

\begin{align*} \int \frac{1}{x^3 \left (2+x^6\right )^{3/2}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{x^2 \left (2+x^3\right )^{3/2}} \, dx,x,x^2\right )\\ &=\frac{1}{6 x^2 \sqrt{2+x^6}}+\frac{5}{12} \operatorname{Subst}\left (\int \frac{1}{x^2 \sqrt{2+x^3}} \, dx,x,x^2\right )\\ &=\frac{1}{6 x^2 \sqrt{2+x^6}}-\frac{5 \sqrt{2+x^6}}{24 x^2}+\frac{5}{48} \operatorname{Subst}\left (\int \frac{x}{\sqrt{2+x^3}} \, dx,x,x^2\right )\\ &=\frac{1}{6 x^2 \sqrt{2+x^6}}-\frac{5 \sqrt{2+x^6}}{24 x^2}+\frac{5}{48} \operatorname{Subst}\left (\int \frac{\sqrt [3]{2} \left (1-\sqrt{3}\right )+x}{\sqrt{2+x^3}} \, dx,x,x^2\right )+\frac{5 \operatorname{Subst}\left (\int \frac{1}{\sqrt{2+x^3}} \, dx,x,x^2\right )}{24 \sqrt [6]{2} \sqrt{2+\sqrt{3}}}\\ &=\frac{1}{6 x^2 \sqrt{2+x^6}}-\frac{5 \sqrt{2+x^6}}{24 x^2}+\frac{5 \sqrt{2+x^6}}{24 \left (\sqrt [3]{2} \left (1+\sqrt{3}\right )+x^2\right )}-\frac{5 \sqrt{2-\sqrt{3}} \left (\sqrt [3]{2}+x^2\right ) \sqrt{\frac{2^{2/3}-\sqrt [3]{2} x^2+x^4}{\left (\sqrt [3]{2} \left (1+\sqrt{3}\right )+x^2\right )^2}} E\left (\sin ^{-1}\left (\frac{\sqrt [3]{2} \left (1-\sqrt{3}\right )+x^2}{\sqrt [3]{2} \left (1+\sqrt{3}\right )+x^2}\right )|-7-4 \sqrt{3}\right )}{8\ 2^{5/6} 3^{3/4} \sqrt{\frac{\sqrt [3]{2}+x^2}{\left (\sqrt [3]{2} \left (1+\sqrt{3}\right )+x^2\right )^2}} \sqrt{2+x^6}}+\frac{5 \left (\sqrt [3]{2}+x^2\right ) \sqrt{\frac{2^{2/3}-\sqrt [3]{2} x^2+x^4}{\left (\sqrt [3]{2} \left (1+\sqrt{3}\right )+x^2\right )^2}} F\left (\sin ^{-1}\left (\frac{\sqrt [3]{2} \left (1-\sqrt{3}\right )+x^2}{\sqrt [3]{2} \left (1+\sqrt{3}\right )+x^2}\right )|-7-4 \sqrt{3}\right )}{12 \sqrt [3]{2} \sqrt [4]{3} \sqrt{\frac{\sqrt [3]{2}+x^2}{\left (\sqrt [3]{2} \left (1+\sqrt{3}\right )+x^2\right )^2}} \sqrt{2+x^6}}\\ \end{align*}

Mathematica [C]  time = 0.0048871, size = 29, normalized size = 0.07 \[ -\frac{\, _2F_1\left (-\frac{1}{3},\frac{3}{2};\frac{2}{3};-\frac{x^6}{2}\right )}{4 \sqrt{2} x^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*(2 + x^6)^(3/2)),x]

[Out]

-Hypergeometric2F1[-1/3, 3/2, 2/3, -x^6/2]/(4*Sqrt[2]*x^2)

________________________________________________________________________________________

Maple [C]  time = 0.026, size = 40, normalized size = 0.1 \begin{align*} -{\frac{5\,{x}^{6}+6}{24\,{x}^{2}}{\frac{1}{\sqrt{{x}^{6}+2}}}}+{\frac{5\,{x}^{4}\sqrt{2}}{192}{\mbox{$_2$F$_1$}({\frac{1}{2}},{\frac{2}{3}};\,{\frac{5}{3}};\,-{\frac{{x}^{6}}{2}})}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(x^6+2)^(3/2),x)

[Out]

-1/24*(5*x^6+6)/x^2/(x^6+2)^(1/2)+5/192*2^(1/2)*x^4*hypergeom([1/2,2/3],[5/3],-1/2*x^6)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (x^{6} + 2\right )}^{\frac{3}{2}} x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(x^6+2)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((x^6 + 2)^(3/2)*x^3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{x^{6} + 2}}{x^{15} + 4 \, x^{9} + 4 \, x^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(x^6+2)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(x^6 + 2)/(x^15 + 4*x^9 + 4*x^3), x)

________________________________________________________________________________________

Sympy [A]  time = 0.777815, size = 39, normalized size = 0.1 \begin{align*} \frac{\sqrt{2} \Gamma \left (- \frac{1}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{3}, \frac{3}{2} \\ \frac{2}{3} \end{matrix}\middle |{\frac{x^{6} e^{i \pi }}{2}} \right )}}{24 x^{2} \Gamma \left (\frac{2}{3}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(x**6+2)**(3/2),x)

[Out]

sqrt(2)*gamma(-1/3)*hyper((-1/3, 3/2), (2/3,), x**6*exp_polar(I*pi)/2)/(24*x**2*gamma(2/3))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (x^{6} + 2\right )}^{\frac{3}{2}} x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(x^6+2)^(3/2),x, algorithm="giac")

[Out]

integrate(1/((x^6 + 2)^(3/2)*x^3), x)